Technologiedatenbank

Technologien der Gegenwart und Zukunft in ihren Auswirkungen auf Produkte, Prozesse und Betriebliche Ebene frühzeitig erfassen.
Logo

Atomlagenabscheidung

Bei der Atomlagenabscheidung handelt es sich um ein verändertes CVD-Verfahren, das u.a. erhöhte Energiedichten bei Batteriezellen ermöglicht.

Prozesstechnologie
Hardwaretechnologie
Industrielle Forschung
Impact Level
TRL4
Logo

CcH2-Technologie

Die CcH2-Technologie umfasst die Speicherung von "mischförmigen Wasserstoff" bestehend aus kryogenen und komprimierten Anteilen.

Produkttechnologie
Hardwaretechnologie
Industrielle Forschung
Impact Level
TRL4
Logo

Cell-to-Chassis

Durch die Cell-to-Chassis-Technologie werden Batteriezellen direkt in die Fahrzeug-Karosserie integriert, was einen Wegfall inaktiver Batterie-Materialien zur Folge hat.

Produkttechnologie
Hardwaretechnologie
Industrielle Forschung
Impact Level
TRL4
Logo

CO2-Abscheider

Der Einsatz von CO2-Abscheidern ermöglicht eine Reduktion der Kohlenstoffdioxid-Emissionen im Lastwagenverkehr.

Produkttechnologie
Hardwaretechnologie
Industrielle Forschung
Impact Level
TRL4
Logo

Dynamisches induktives Laden

Das dynamische induktive Laden umfasst das kabellose Aufladen von batterieelektrischen Fahrzeugen. Die Aufladung erfolgt während sich das Fahrzeug im fahrenden Zustand befindet.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL5
Logo

E-Fuels

E-Fuels sind synthetische Kraftstoffe, die in Verbrennungsmotoren eingesetzt werden können. 

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL8
Logo

Energy-harvesting damping

Energy-harvesting damping soll dazu beitragen, bisher ungenutzte Bewegungsenergien im Fahrzeugbetrieb nutzbar zu machen.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL5
Logo

Feststoffbatterie

Während Elektrolyte bei herkömmlichen Batterien flüssig sind, bestehen sie bei Feststoffbatterien aus festen Materialien, was große Potenziale im Hinblick auf Energiedichte und Sicherheit birgt.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL6
Logo

Metall-Luft-Batterie

Die Metall-Luft-Batterietechnologie gilt aufgrund theoretisch hoher Energiedichten als verheißungsvolle Zukunftstechnologie.

Produkttechnologie
Hardwaretechnologie
Industrielle Forschung
Impact Level
TRL2
Logo

Metall-Schwefel-Batterie

Die Metall-Schwefel-Batterietechnologie basiert auf Schwefel als Kathodenaktivmaterial, was aufgrund des hohen Schwefel-Vorkommens große Vorteile birgt.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL6
Logo

Motor-Decoupling

Das Motor-Decoupling bezieht sich auf die Entkoppelung eines nicht aktiv angetriebenen Elektromotors vom Antriebsstrang.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL8
Logo

Natrium-Ionen-Batterie

Die Natrium-Ionen-Batterietechnologie hat im Bereich Lieferkettenresilienz und Nachhaltigkeit wesentliche Vorteile gegenüber der Lithium-Ionen-Batterietechnologie.

Produkttechnologie
Hardwaretechnologie
Markteinführung
Impact Level
TRL9
Logo

Nickelreiche Batterie-Kathoden

Die Weiterentwicklung der Lithium-Ionen-Batterietechnologie wird insbesondere durch die Steigerung des Nickelgehalts in der Kathode und der Steigerung des Siliziumanteils in der Anode vorangetrieben.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL8
Logo

Optimierung Typ IV-Wasserstoffdrucktank

Die Optimierung der häufig verwendeten Typ IV-Druckbehälter für die Speicherung von gasförmigem Wasserstoff wird derzeit in mehreren Forschungsprojekten vorangetrieben.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL8
Logo

Piezo-Reifen

Piezo-Reifen integrieren piezoelektrische Materialien, um eine Umwandlung von mechanischen Belastungen in elektrische Energie zu ermöglichen.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL5
Logo

Schwungradspeicher

Schwungradspeicher können durch die Umwandlung von elektrischer Energie in mechanische Energie als Stromspeicher fungieren und bieten perspektivisch neue Möglichkeiten im Rahmen der kurzzeitigen Energiespeicherung.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL7
Logo

Semidynamisches induktives Laden

Das semidynamische induktive Laden umfasst das kabellose Aufladen von batterieelektrischen Fahrzeugen. Die Aufladung erfolgt während sich das Fahrzeug im stehenden oder rollenden Zustand befindet.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL7
Logo

sLH2-Technologie

Die sLH2-Technologie bzw. die Speicherung von Flüssig-Wasserstoff ermöglicht die Erzielung hoher Energiedichten, bedingt aber auch das Vorhandensein tiefkalter Temperaturen, was in der praktischen Umsetzung mit großen Herausforderungen verbunden ist.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL7
Logo

Stationäres induktives Laden

Das stationäre induktive Laden umfasst das kabellose Aufladen von batterieelektrischen Fahrzeugen. Die Aufladung erfolgt während sich das Fahrzeug im stehenden bzw. ruhenden Zustand befindet.

Produkttechnologie
Hardwaretechnologie
Experimentelle Entwicklung
Impact Level
TRL7
Logo

Trägermaterialien zur Wasserstoff-Speicherung

Alternativ zu den konventionellen Speichermöglichkeiten von Wasserstoff besteht die Option der Wasserstoff-Lagerung durch Träger-Feststoffe (Metallhydride) oder Träger-Flüssigkeiten (Liquid Organic Hydrogen Carriers), auch bekannt als Adsorptions- und Absorptionsspeicher.

Produkttechnologie
Hardwaretechnologie
Industrielle Forschung
Impact Level
TRL4
Logo

Typ V-Wasserstoffdrucktank

Als nächste Generation von Wasserstoff-Druckbehältern gilt der "Typ V", der vollständig aus faserverstärkten Kunststoffen besteht und keinen zusätzlichen Liner benötigt.

Produkttechnologie
Hardwaretechnologie
Industrielle Forschung
Impact Level
TRL3